|
You've gotten all the specific answers you need, but I thought I'd chime
in with the more generalized approach. This is Boolean logic or more
precisely Boolean algebra (which is what got me into programming lo
those many decades ago). The specific case is DeMorgan's law, which
states:
not (A and B) = (not A or not B)
A: SML010 <> 5
B: M1PLIN = *blanks
not A: SML010 = 5
not B: M1PLIN <> *blanks
(not A or not B): (SML010 = 5 or M1PLIN <> *blanks)
I use Boolean algebra all the time to simplify complex business logic
(especially IF statements that have grown over time). A nice page for
it exists here:
https://www.ics.uci.edu/~pattis/ICS-31/lectures/simplify/lecture.html
As an Amazon Associate we earn from qualifying purchases.
This mailing list archive is Copyright 1997-2025 by midrange.com and David Gibbs as a compilation work. Use of the archive is restricted to research of a business or technical nature. Any other uses are prohibited. Full details are available on our policy page. If you have questions about this, please contact [javascript protected email address].
Operating expenses for this site are earned using the Amazon Associate program and Google Adsense.